Copied to
clipboard

G = C3313SD16order 432 = 24·33

5th semidirect product of C33 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: C3313SD16, C12.28S32, C337C83C2, (C3×Dic6)⋊2S3, C12⋊S3.4S3, Dic62(C3⋊S3), (C3×C12).116D6, (C32×C6).33D4, (C32×Dic6)⋊3C2, C2.6(C336D4), C32(Dic6⋊S3), C6.22(D6⋊S3), C32(C3211SD16), C3213(D4.S3), C327(Q82S3), C6.10(C327D4), (C32×C12).12C22, C4.17(S3×C3⋊S3), C12.12(C2×C3⋊S3), (C3×C12⋊S3).2C2, (C3×C6).88(C3⋊D4), SmallGroup(432,440)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C3313SD16
C1C3C32C33C32×C6C32×C12C32×Dic6 — C3313SD16
C33C32×C6C32×C12 — C3313SD16
C1C2C4

Generators and relations for C3313SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, dcd-1=c-1, ce=ec, ede=d3 >

Subgroups: 736 in 152 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, Dic6, D12, C3×D4, C3×Q8, C33, C3×Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, D4.S3, Q82S3, C3×C3⋊S3, C32×C6, C324C8, C3×Dic6, C3×D12, C12⋊S3, Q8×C32, C32×Dic3, C32×C12, C6×C3⋊S3, Dic6⋊S3, C3211SD16, C337C8, C32×Dic6, C3×C12⋊S3, C3313SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, C3⋊D4, S32, C2×C3⋊S3, D4.S3, Q82S3, D6⋊S3, C327D4, S3×C3⋊S3, Dic6⋊S3, C3211SD16, C336D4, C3313SD16

Smallest permutation representation of C3313SD16
On 144 points
Generators in S144
(1 54 20)(2 21 55)(3 56 22)(4 23 49)(5 50 24)(6 17 51)(7 52 18)(8 19 53)(9 129 63)(10 64 130)(11 131 57)(12 58 132)(13 133 59)(14 60 134)(15 135 61)(16 62 136)(25 119 86)(26 87 120)(27 113 88)(28 81 114)(29 115 82)(30 83 116)(31 117 84)(32 85 118)(33 43 126)(34 127 44)(35 45 128)(36 121 46)(37 47 122)(38 123 48)(39 41 124)(40 125 42)(65 144 90)(66 91 137)(67 138 92)(68 93 139)(69 140 94)(70 95 141)(71 142 96)(72 89 143)(73 108 98)(74 99 109)(75 110 100)(76 101 111)(77 112 102)(78 103 105)(79 106 104)(80 97 107)
(1 31 15)(2 16 32)(3 25 9)(4 10 26)(5 27 11)(6 12 28)(7 29 13)(8 14 30)(17 58 81)(18 82 59)(19 60 83)(20 84 61)(21 62 85)(22 86 63)(23 64 87)(24 88 57)(33 137 102)(34 103 138)(35 139 104)(36 97 140)(37 141 98)(38 99 142)(39 143 100)(40 101 144)(41 72 75)(42 76 65)(43 66 77)(44 78 67)(45 68 79)(46 80 69)(47 70 73)(48 74 71)(49 130 120)(50 113 131)(51 132 114)(52 115 133)(53 134 116)(54 117 135)(55 136 118)(56 119 129)(89 110 124)(90 125 111)(91 112 126)(92 127 105)(93 106 128)(94 121 107)(95 108 122)(96 123 109)
(1 15 31)(2 32 16)(3 9 25)(4 26 10)(5 11 27)(6 28 12)(7 13 29)(8 30 14)(17 81 58)(18 59 82)(19 83 60)(20 61 84)(21 85 62)(22 63 86)(23 87 64)(24 57 88)(33 137 102)(34 103 138)(35 139 104)(36 97 140)(37 141 98)(38 99 142)(39 143 100)(40 101 144)(41 72 75)(42 76 65)(43 66 77)(44 78 67)(45 68 79)(46 80 69)(47 70 73)(48 74 71)(49 120 130)(50 131 113)(51 114 132)(52 133 115)(53 116 134)(54 135 117)(55 118 136)(56 129 119)(89 110 124)(90 125 111)(91 112 126)(92 127 105)(93 106 128)(94 121 107)(95 108 122)(96 123 109)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 70)(2 65)(3 68)(4 71)(5 66)(6 69)(7 72)(8 67)(9 79)(10 74)(11 77)(12 80)(13 75)(14 78)(15 73)(16 76)(17 94)(18 89)(19 92)(20 95)(21 90)(22 93)(23 96)(24 91)(25 45)(26 48)(27 43)(28 46)(29 41)(30 44)(31 47)(32 42)(33 113)(34 116)(35 119)(36 114)(37 117)(38 120)(39 115)(40 118)(49 142)(50 137)(51 140)(52 143)(53 138)(54 141)(55 144)(56 139)(57 112)(58 107)(59 110)(60 105)(61 108)(62 111)(63 106)(64 109)(81 121)(82 124)(83 127)(84 122)(85 125)(86 128)(87 123)(88 126)(97 132)(98 135)(99 130)(100 133)(101 136)(102 131)(103 134)(104 129)

G:=sub<Sym(144)| (1,54,20)(2,21,55)(3,56,22)(4,23,49)(5,50,24)(6,17,51)(7,52,18)(8,19,53)(9,129,63)(10,64,130)(11,131,57)(12,58,132)(13,133,59)(14,60,134)(15,135,61)(16,62,136)(25,119,86)(26,87,120)(27,113,88)(28,81,114)(29,115,82)(30,83,116)(31,117,84)(32,85,118)(33,43,126)(34,127,44)(35,45,128)(36,121,46)(37,47,122)(38,123,48)(39,41,124)(40,125,42)(65,144,90)(66,91,137)(67,138,92)(68,93,139)(69,140,94)(70,95,141)(71,142,96)(72,89,143)(73,108,98)(74,99,109)(75,110,100)(76,101,111)(77,112,102)(78,103,105)(79,106,104)(80,97,107), (1,31,15)(2,16,32)(3,25,9)(4,10,26)(5,27,11)(6,12,28)(7,29,13)(8,14,30)(17,58,81)(18,82,59)(19,60,83)(20,84,61)(21,62,85)(22,86,63)(23,64,87)(24,88,57)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,72,75)(42,76,65)(43,66,77)(44,78,67)(45,68,79)(46,80,69)(47,70,73)(48,74,71)(49,130,120)(50,113,131)(51,132,114)(52,115,133)(53,134,116)(54,117,135)(55,136,118)(56,119,129)(89,110,124)(90,125,111)(91,112,126)(92,127,105)(93,106,128)(94,121,107)(95,108,122)(96,123,109), (1,15,31)(2,32,16)(3,9,25)(4,26,10)(5,11,27)(6,28,12)(7,13,29)(8,30,14)(17,81,58)(18,59,82)(19,83,60)(20,61,84)(21,85,62)(22,63,86)(23,87,64)(24,57,88)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,72,75)(42,76,65)(43,66,77)(44,78,67)(45,68,79)(46,80,69)(47,70,73)(48,74,71)(49,120,130)(50,131,113)(51,114,132)(52,133,115)(53,116,134)(54,135,117)(55,118,136)(56,129,119)(89,110,124)(90,125,111)(91,112,126)(92,127,105)(93,106,128)(94,121,107)(95,108,122)(96,123,109), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,70)(2,65)(3,68)(4,71)(5,66)(6,69)(7,72)(8,67)(9,79)(10,74)(11,77)(12,80)(13,75)(14,78)(15,73)(16,76)(17,94)(18,89)(19,92)(20,95)(21,90)(22,93)(23,96)(24,91)(25,45)(26,48)(27,43)(28,46)(29,41)(30,44)(31,47)(32,42)(33,113)(34,116)(35,119)(36,114)(37,117)(38,120)(39,115)(40,118)(49,142)(50,137)(51,140)(52,143)(53,138)(54,141)(55,144)(56,139)(57,112)(58,107)(59,110)(60,105)(61,108)(62,111)(63,106)(64,109)(81,121)(82,124)(83,127)(84,122)(85,125)(86,128)(87,123)(88,126)(97,132)(98,135)(99,130)(100,133)(101,136)(102,131)(103,134)(104,129)>;

G:=Group( (1,54,20)(2,21,55)(3,56,22)(4,23,49)(5,50,24)(6,17,51)(7,52,18)(8,19,53)(9,129,63)(10,64,130)(11,131,57)(12,58,132)(13,133,59)(14,60,134)(15,135,61)(16,62,136)(25,119,86)(26,87,120)(27,113,88)(28,81,114)(29,115,82)(30,83,116)(31,117,84)(32,85,118)(33,43,126)(34,127,44)(35,45,128)(36,121,46)(37,47,122)(38,123,48)(39,41,124)(40,125,42)(65,144,90)(66,91,137)(67,138,92)(68,93,139)(69,140,94)(70,95,141)(71,142,96)(72,89,143)(73,108,98)(74,99,109)(75,110,100)(76,101,111)(77,112,102)(78,103,105)(79,106,104)(80,97,107), (1,31,15)(2,16,32)(3,25,9)(4,10,26)(5,27,11)(6,12,28)(7,29,13)(8,14,30)(17,58,81)(18,82,59)(19,60,83)(20,84,61)(21,62,85)(22,86,63)(23,64,87)(24,88,57)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,72,75)(42,76,65)(43,66,77)(44,78,67)(45,68,79)(46,80,69)(47,70,73)(48,74,71)(49,130,120)(50,113,131)(51,132,114)(52,115,133)(53,134,116)(54,117,135)(55,136,118)(56,119,129)(89,110,124)(90,125,111)(91,112,126)(92,127,105)(93,106,128)(94,121,107)(95,108,122)(96,123,109), (1,15,31)(2,32,16)(3,9,25)(4,26,10)(5,11,27)(6,28,12)(7,13,29)(8,30,14)(17,81,58)(18,59,82)(19,83,60)(20,61,84)(21,85,62)(22,63,86)(23,87,64)(24,57,88)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,72,75)(42,76,65)(43,66,77)(44,78,67)(45,68,79)(46,80,69)(47,70,73)(48,74,71)(49,120,130)(50,131,113)(51,114,132)(52,133,115)(53,116,134)(54,135,117)(55,118,136)(56,129,119)(89,110,124)(90,125,111)(91,112,126)(92,127,105)(93,106,128)(94,121,107)(95,108,122)(96,123,109), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,70)(2,65)(3,68)(4,71)(5,66)(6,69)(7,72)(8,67)(9,79)(10,74)(11,77)(12,80)(13,75)(14,78)(15,73)(16,76)(17,94)(18,89)(19,92)(20,95)(21,90)(22,93)(23,96)(24,91)(25,45)(26,48)(27,43)(28,46)(29,41)(30,44)(31,47)(32,42)(33,113)(34,116)(35,119)(36,114)(37,117)(38,120)(39,115)(40,118)(49,142)(50,137)(51,140)(52,143)(53,138)(54,141)(55,144)(56,139)(57,112)(58,107)(59,110)(60,105)(61,108)(62,111)(63,106)(64,109)(81,121)(82,124)(83,127)(84,122)(85,125)(86,128)(87,123)(88,126)(97,132)(98,135)(99,130)(100,133)(101,136)(102,131)(103,134)(104,129) );

G=PermutationGroup([[(1,54,20),(2,21,55),(3,56,22),(4,23,49),(5,50,24),(6,17,51),(7,52,18),(8,19,53),(9,129,63),(10,64,130),(11,131,57),(12,58,132),(13,133,59),(14,60,134),(15,135,61),(16,62,136),(25,119,86),(26,87,120),(27,113,88),(28,81,114),(29,115,82),(30,83,116),(31,117,84),(32,85,118),(33,43,126),(34,127,44),(35,45,128),(36,121,46),(37,47,122),(38,123,48),(39,41,124),(40,125,42),(65,144,90),(66,91,137),(67,138,92),(68,93,139),(69,140,94),(70,95,141),(71,142,96),(72,89,143),(73,108,98),(74,99,109),(75,110,100),(76,101,111),(77,112,102),(78,103,105),(79,106,104),(80,97,107)], [(1,31,15),(2,16,32),(3,25,9),(4,10,26),(5,27,11),(6,12,28),(7,29,13),(8,14,30),(17,58,81),(18,82,59),(19,60,83),(20,84,61),(21,62,85),(22,86,63),(23,64,87),(24,88,57),(33,137,102),(34,103,138),(35,139,104),(36,97,140),(37,141,98),(38,99,142),(39,143,100),(40,101,144),(41,72,75),(42,76,65),(43,66,77),(44,78,67),(45,68,79),(46,80,69),(47,70,73),(48,74,71),(49,130,120),(50,113,131),(51,132,114),(52,115,133),(53,134,116),(54,117,135),(55,136,118),(56,119,129),(89,110,124),(90,125,111),(91,112,126),(92,127,105),(93,106,128),(94,121,107),(95,108,122),(96,123,109)], [(1,15,31),(2,32,16),(3,9,25),(4,26,10),(5,11,27),(6,28,12),(7,13,29),(8,30,14),(17,81,58),(18,59,82),(19,83,60),(20,61,84),(21,85,62),(22,63,86),(23,87,64),(24,57,88),(33,137,102),(34,103,138),(35,139,104),(36,97,140),(37,141,98),(38,99,142),(39,143,100),(40,101,144),(41,72,75),(42,76,65),(43,66,77),(44,78,67),(45,68,79),(46,80,69),(47,70,73),(48,74,71),(49,120,130),(50,131,113),(51,114,132),(52,133,115),(53,116,134),(54,135,117),(55,118,136),(56,129,119),(89,110,124),(90,125,111),(91,112,126),(92,127,105),(93,106,128),(94,121,107),(95,108,122),(96,123,109)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,70),(2,65),(3,68),(4,71),(5,66),(6,69),(7,72),(8,67),(9,79),(10,74),(11,77),(12,80),(13,75),(14,78),(15,73),(16,76),(17,94),(18,89),(19,92),(20,95),(21,90),(22,93),(23,96),(24,91),(25,45),(26,48),(27,43),(28,46),(29,41),(30,44),(31,47),(32,42),(33,113),(34,116),(35,119),(36,114),(37,117),(38,120),(39,115),(40,118),(49,142),(50,137),(51,140),(52,143),(53,138),(54,141),(55,144),(56,139),(57,112),(58,107),(59,110),(60,105),(61,108),(62,111),(63,106),(64,109),(81,121),(82,124),(83,127),(84,122),(85,125),(86,128),(87,123),(88,126),(97,132),(98,135),(99,130),(100,133),(101,136),(102,131),(103,134),(104,129)]])

48 conjugacy classes

class 1 2A2B3A···3E3F3G3H3I4A4B6A···6E6F6G6H6I6J6K8A8B12A···12M12N···12U
order1223···33333446···66666668812···1212···12
size11362···244442122···24444363654544···412···12

48 irreducible representations

dim111122222244444
type+++++++++-+-
imageC1C2C2C2S3S3D4D6SD16C3⋊D4S32D4.S3Q82S3D6⋊S3Dic6⋊S3
kernelC3313SD16C337C8C32×Dic6C3×C12⋊S3C3×Dic6C12⋊S3C32×C6C3×C12C33C3×C6C12C32C32C6C3
# reps1111411521041448

Matrix representation of C3313SD16 in GL8(𝔽73)

10000000
01000000
001700000
001710000
00001000
00000100
000000072
000000172
,
10000000
01000000
00100000
00010000
00001000
00000100
000000072
000000172
,
10000000
01000000
00100000
00010000
0000727200
00001000
00000010
00000001
,
018000000
6961000000
001700000
000720000
000072000
00001100
00000001
00000010
,
13000000
072000000
007230000
00010000
000072000
000007200
00000001
00000010

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,70,71,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,69,0,0,0,0,0,0,18,61,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,70,72,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,3,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C3313SD16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_{13}{\rm SD}_{16}
% in TeX

G:=Group("C3^3:13SD16");
// GroupNames label

G:=SmallGroup(432,440);
// by ID

G=gap.SmallGroup(432,440);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,254,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽